81 research outputs found

    Human-Centered Computer Vision

    Get PDF
    Contains fulltext : 241512.pdf (Publisher’s version ) (Open Access)Symposium on The Art and Science of Pattern Recognitio

    Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database

    Get PDF
    Objectives: To benchmark the performance of state-of-the-art computer-aided detection (CAD) of pulmonary nodules using the largest publicly available annotated CT database (LIDC/IDRI), and to show that CAD finds lesions not identified by the LIDC’s four-fold double reading process. Methods: The LIDC/IDRI database contains 888 thoracic CT scans with a section thickness of 2.5 mm or lower. We report performance of two commercial and one academic CAD system. The influence of presence of contrast, section thickness, and reconstruction kernel on CAD performance was assessed. Four radiologists independently analyzed the false positive CAD marks of the best CAD system. Results: The updated commercial CAD system showed the best performance with a sensitivity of 82 % at an average of 3.1 false positive detections per scan. Forty-five false positive CAD marks were scored as nodules by all four radiologists in our study. Conclusions: On the largest publicly available reference database for lung nodule detection in chest CT, the updated commercial CAD system locates the vast majority of pulmonary nodules at a low false positive rate. Potential for CAD is substantiated by the fact that it identifies pulmonary nodules that were not marked during the extensive four-fold LIDC annotation process

    Chartis Measurement of Collateral Ventilation:Conscious Sedation versus General Anesthesia

    Get PDF
    BACKGROUND: Absence of interlobar collateral ventilation using the Chartis measurement is the key predictor for successful endobronchial valve treatment in severe emphysema. Chartis was originally validated in spontaneous breathing patients under conscious sedation (CS); however, this can be challenging due to cough, mucus secretion, mucosal swelling, and bronchoconstriction. Performing Chartis under general anesthesia (GA) avoids these problems and may result in an easier procedure with a higher success rate. However, using Chartis under GA with positive pressure ventilation has not been validated. OBJECTIVES: In this study we investigated the impact of anesthesia technique, CS versus GA, on the feasibility and outcomes of Chartis measurement. METHODS: We retrospectively analyzed all Chartis measurements performed at our hospital from October 2010 until December 2017. RESULTS: We analyzed 250 emphysema patients (median forced expiratory volume in 1 s 26%, range 12-52% predicted). In 121 patients (48%) the measurement was performed using CS, in 124 (50%) using GA, and in 5 (2%) both anesthesia techniques were used. In total, 746 Chartis readings were analyzed (432 CS, 277 GA, and 37 combination). Testing under CS took significantly longer than GA (median 19 min [range 5-65] vs. 11 min [3-35], p < 0.001) and required more measurements (3 [1-13] vs. 2 [1-6], p < 0.001). There was no significant difference in target lobe volume reduction after treatment (-1,123 mL [-3,604 to 332] in CS vs. -1,251 mL [-3,333 to -1] in GA, p = 0.35). CONCLUSIONS: In conclusion, Chartis measurement under CS took significantly longer and required more measurements than under GA, without a difference in treatment outcome. We recommend a prospective trial comparing both techniques within the same patients to validate this approach

    A New Oxygen Uptake Measurement Supporting Target Selection for Endobronchial Valve Treatment

    Get PDF
    BACKGROUND: Adequate target lobe selection for endobronchial valve (EBV) treatment in patients with severe emphysema is essential for treatment success and can be based on emphysema destruction, lobar perfusion, lobar volume, and collateral ventilation. As some patients have >1 target lobe for EBV treatment, we were interested whether we could identify the least functional lobe. OBJECTIVES: The objective of this study was to investigate the relationship between endoscopic lobar measurement of oxygen uptake, lobar destruction, and vascular volume, and whether this could help in identifying the least functional lobe and thus optimal target for EBV treatment. METHOD: We prospectively included patients who were scheduled for EBV treatment in our hospital. A customized gas analysis setup was used to measure lobar O2 uptake after lobar balloon occlusion. Quantitative CT analysis was performed to assess the degree of emphysematous destruction and lobar arterial and venous volumes. RESULTS: Twenty-one (5 male/16 female) patients with emphysema (median age 63 years, FEV1 25% of predicted, residual volume 234% of predicted) were included, and 49 endoscopic lobar measurements were performed. A lower O2 uptake significantly correlated with a higher degree of emphysematous lobar destruction (Spearman's ρ: 0.39, p < 0.01), and lower arterial and venous vascular volumes of the lobes (-0.46 and -0.47, respectively; both p < 0.001). CONCLUSIONS: Endoscopic measurement of lobar O2 uptake is feasible in patients with emphysema. Measurement of lobar O2 uptake helped to identify the least functional lobe and can be used as additional tool for EBV target lobe selection

    HRCT characteristics of severe emphysema patients:Interobserver variability among expert readers and comparison with quantitative software

    Get PDF
    PURPOSE: For a successful bronchoscopic lung volume reduction coil treatment it is important to place the coils in the most emphysematous lobes. Therefore assessment of the lobe with greatest destruction is essential. Our aims were to investigate the level of agreement among expert reviewers of HRCT-scans in emphysema patients and the comparison with QCT (quantitative computed tomography) software. METHOD: Five experienced CT-assessors, conducted a visual assessment of the baseline HRCT-scans of emphysema patients who participated in the RENEW bronchoscopic lung volume reduction coil study. On the same HRCT-scans, a QCT analysis was performed. RESULTS: In total 134 HRCT-scans were rated by all 5 experts. All 5 CT-assessors agreed on which was the most destructed lobe in 61 % of the left lungs (k:0.459) and 60 % of the right lungs (k:0.370). The consensus of the 5 assessors matched the QCT in the left lung for 77 % of the patients (k:0.425) and in the right lung for 82 % (k:0.524). CONCLUSIONS: Our results show that the interobserver agreement between five expert CT-assessors was only fair to moderate when evaluating the most destructed lobe. CT-assessor consensus improved matching with QCT determination of lobar destruction compared to individual assessor determinations. Because some CT-features are associated with treatment outcomes and important for optimal patient selection of bronchoscopic lung volume reduction treatment, we recommend including more than one CT-reviewer and supported by QCT measurements

    Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

    Full text link
    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.Rudyanto, RD.; Kerkstra, S.; Van Rikxoort, EM.; Fetita, C.; Brillet, P.; Lefevre, C.; Xue, W.... (2014). Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study. Medical Image Analysis. 18(7):1217-1232. doi:10.1016/j.media.2014.07.003S1217123218

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline:Five-Year Follow-up in Adult Smokers From the COPDGene Study

    Get PDF
    corecore